Convergent/Divergent Synthesis and Photophysical Studies of Alternating Benzene-Furan Oligoaryls from Substituted Propargylic Dithioacetals

Chih-Ming Chou, ${ }^{[a]}$ Wei-Qiang Chen, ${ }^{[a]}$ Jia-Hong Chen, ${ }^{[a]}$ Cheng-Lan Lin, ${ }^{[a, b]}$ Jui-Chang Tseng, ${ }^{[a]}$ Chin-Fa Lee, ${ }^{[a]}$ and Tien-Yau Luh ${ }^{[a]}$

Abstract

A range of oligoaryls that contain alternating benzene-furan rings is synthesized by a rapid convergent/divergent method from the annulation of a propargylic dithioacetal and an aldehyde with a propargylic dithioacetal moiety as a substituent. These oligomers are fairly soluble in a range of organic solvents and can be easily purified by reprecipitation. The sub-

stituents on the furan rings can be varied according to the substituents in the starting propargylic dithioacetals. This route provides a useful procedure for the synthesis of alternating ben-

Keywords: annulation • band gaps • electrochemistry • fluorescence • oligomerization
zene-furan oligomers without repeated units. These furan-containing oligoaryls are highly fluorescent in the visible region and are electrochemically active. The band gaps of these oligomers appear to be less sensitive towards changes in conjugation length than those of oligofurans.

Introduction

The incorporation of heteroaromatic rings into conjugated polymers is known to modify remarkably the photophysical and electronic properties of the polymers. ${ }^{[1]}$ For example, polythiophenes ${ }^{[2]}$ and polypyrroles ${ }^{[3]}$ are extensively studied and widely used in optoelectronics. There is burgeoning interest in well-defined monodispersed oligomers of precise conjugation lengths as models for polymer analogues. ${ }^{[4]}$ It is suggested that these nanoscale conjugated oligomers may fit nicely with the approximate size of present nanopattern probe gaps. ${ }^{[4]}$ Various approaches are known in the synthesis of long conjugated oligoaryls. Coupling reactions and annulation protocols appear to be most commonly used in the construction of oligomer backbones. Oligothiophenes ${ }^{[5]}$ and oligopyrroles ${ }^{[6]}$ are conveniently synthesized by such methods. Relatively speaking, the corresponding furan analogues have only been sporadically explored. ${ }^{[7]}$ Furan-containing conjugated polymers are photochemically labile in the presence of air (oxygen). ${ }^{[7 \mathrm{a}]}$ Under inert atmosphere, however, furan rings in oligoaryls remain intact upon irradiation. ${ }^{[8]}$ Indeed, alternating benzene-furan oligomers are used in electroluminescence as efficient hole-transporting materials with good charge mobility. ${ }^{[8]}$ Furthermore, the bismercaptan derivatives of ter- and pentaaryls were shown to assemble
[a] C.-M. Chou, Dr. W.-Q. Chen, J.-H. Chen, Dr. C.-L. Lin, Dr. J.-C. Tseng, Dr. C.-F. Lee, Prof. T.-Y. Luh
Department of Chemistry, National Taiwan University Taipei, 106 (Taiwan)
Fax: (+886)-2-2364-4971
E-mail: tyluh@ntu.edu.tw
[b] Dr. C.-L. Lin
Institute of Chemistry, Academia Sinica Nangang, Taipei, 115 (Taiwan)
Supporting information for this article is available on the WWW under http://www.chemasianj.org or from the author.

Scheme 1. Annulation protocol used as the basis for subsequent syntheses.
on the gold (111) surface with significant $\pi-\pi$ stacking. ${ }^{[9]}$ By adopting an annulation protocol starting from the propargylic dithioacetal $\mathbf{1}$ and an aldehyde (Scheme 1), ${ }^{[10]}$ oligomers 5 and/or 6 can be formed by bidirectional iterative synthesis from the corresponding dialdehyde and 4 (Scheme 2). ${ }^{[100, c]}$ However, each annulation in Scheme 2 can only introduce four aryl moieties, including two furan rings. A more expeditious protocol would be highly desirable to enable the rapid synthesis of higher homologues of furan-containing oligoaryls.

A range of functional groups, such as ester, ether linkage, trifluoromethyl, cyano, hydroxyl, and even aryl bromide, was shown to be stable under the annulation conditions in Scheme $1 .{ }^{[10]}$ We therefore envisaged that an allenyl or propargylic lithium intermediate 7, generated from 4, might react with another molecule of aldehyde $\mathbf{8}$, which contains a propargylic dithioacetal moiety, to give teraryl 9. Notably, 9 thus produced may contain both a propargylic dithioacetal moiety and an ester group, and the latter may be converted into aldehyde $\mathbf{1 0}$ for further transformation. Accordingly, a similar combination of two teraryls $\mathbf{1 2}$ and $\mathbf{1 0}$ may furnish the corresponding heptamer $\mathbf{1 3}$ (Scheme 3).

The strategy shown in Scheme 3 would provide an efficient way to synthesize convergently a range of higher ho-

Scheme 2．Bidirectional iterative annulation of $\mathbf{4}$ to produce alternating benzene－furan oligoaryl 6 ．
diisobutylaluminum hydride （DIBAL）to afford alcohol 19 in 97% yield．Oxidation of 19 with MnO_{2} gave the corre－ sponding aldehyde $\mathbf{8}$ in 92% yield．Sequential reaction of 4 with $n \mathrm{BuLi}, 8$ ，and trifluoroace－ tic acid（TFA）afforded the cor－ responding teraryl 9 in 56% overall yield．There are two in－ teresting features in this reac－ tion sequence．First，n－butyl－ lithium reacted selectively with the sulfur moiety of the dithio－ lane functionality in 4 to give allenyl anion 7，with the ester group remaining intact under the reaction conditions．Second，the allenyl or propargylic anion 7 reacted preferentially with the aldehyde group in $\mathbf{8}$ to give the corresponding annulation product $\mathbf{9}$ ；the dithio－ lane group in $\mathbf{8}$ was stable under these conditions．

Reduction of 9 with DIBAL gave 11，which was then oxi－ dized with MnO_{2} to give $\mathbf{1 0}$ in 90% yield（two steps）．Meth－ ylation of $\mathbf{1 1}$ with NaH and then MeI afforded the corre－ sponding methyl ether $\mathbf{1 2}$ in 94% yield．
Attempts to annulate $\mathbf{9}$ with $\mathbf{1 0}$ under the conditions used for the synthesis of $\mathbf{9}$ gave the desired heptaaryl dithioacetal 14 in trace amounts．Interestingly，a significant amount of the ester group in 9 reacted with $n \mathrm{BuLi}$ under the reaction conditions．Presumably，an extension of conjugation would enhance the reactivity of the ester group toward $n \mathrm{BuLi}$ ．In－ stead，treatment of $\mathbf{1 2}$ with $n \mathrm{BuLi}$（1 equiv）followed by $\mathbf{1 0}$ and TFA afforded $\mathbf{1 3}$ in 73% yield．Oxidation of $\mathbf{1 3}$ with 2，3－dichloro－5，6－dicyano－p－benzoquinone（DDQ），however， gave the corresponding aldehyde $\mathbf{1 5}$ in very low yield （ $\approx 5 \%$ ）．Alternatively，treatment of $\mathbf{1 1}$ with $n \mathrm{BuLi}$ （ 2.2 equiv）followed by $\mathbf{1 0}$ and TFA in usual manner afford－ ed $\mathbf{1 6}$ in $\mathbf{7 0 \%}$ yield．Swern oxidation of $\mathbf{1 6}$（dimethyl sulfox－

Abstract

Chinese： 結合匯集法與分流法，利用炔丙基硫缩醛與有機鋰試剤反應，再與含炔丙基硫縮醛取代基之醛進行環化，可以迅速合成長锺的苯環－呋喃環交替的共軛寡聚分子。利用這一策略，可以合成共軛寡聚分子不含重複基围，甚至可期合成單一分子量的高分子。本文也探討這些共軛寡聚分子的光物理和電化學性質。

Scheme 3. Convergent synthesis of alternating benzene-furan heptamers from $\mathbf{7}$ and $\mathbf{8}$.
ide (DMSO), $\mathrm{Ac}_{2} \mathrm{O}$) gave $\mathbf{1 5}$ in 78% yield. Further annulation of $\mathbf{1 3}$ with $\mathbf{1 5}$ under similar conditions produced the corresponding 15-mer dithioacetal $\mathbf{2 0}$ in 73% yield.

This protocol apparently provided a rapid convergent synthesis of a range of well-defined monodispersed oligomers that contain alternating benzene-furan rings. Furthermore, the corresponding aldehyde functionality and propargylic dithioacetal groups were conveniently introduced by this reaction sequence.
The oligoaryl dithioacetals thus obtained were used for further annulations with a dialdehyde with the protocol described in Scheme 2. For example, reaction of $\mathbf{1 3}$ with $n \mathrm{BuLi}$ followed by terephthaldehyde ($1 / 2$ equiv) and the usual treatment afforded $\mathbf{1 7 d}$ in 23% yield. Similarly, $37-$ mer $\mathbf{1 7 e}$ was obtained in 77% yield from the annulation of $\mathbf{2 0}$ (2 equiv) with 5 under typical annulation conditions. As there are alkyl substituents on each of the furan rings, these oligomers are fairly soluble in organic solvents. Because the starting materials and the products have very different molecular weights, purification of the final products can be achieved easily by the typical reprecipitation commonly used in polymer chemistry.

As shown in Scheme 3, teraryl 9 is obtained from the reaction of propargylic dithioacetal 4 , which serves as the precursor of allenyl anion 7, and another propargylic dithioacetal 8, which has an electrophilic aldehyde group. We therefore envisaged that the substituents on the alkynyl carbons in $\mathbf{4}$ and $\mathbf{8}$ could be different, so that the substituent on C3 of the furan rings in 9 would be different from the substituent on the alkynyl carbon atom. By employing this strategy, synthesis of oligoaryls without repeated units would be feasible. We tested this hypothesis by synthesizing teraryls 24 and 26 (Scheme 4). Thus, reaction of the allenyl anion (like 7, prepared from 21 and $n \mathrm{BuLi}$) with $\mathbf{8}$ followed by treatment with TFA in the same manner as that described above afforded $\mathbf{2 4}$ in 53% yield. Similarly, reaction of $\mathbf{7}$ with $\mathbf{2 3}$ by the same method gave 26 in 50% yield.

Functional-group transformation of $\mathbf{2 4}$ afforded the corresponding aldehyde $\mathbf{2 8}$. In a similar manner, $\mathbf{2 6}$ was converted into 29, which was allowed to annulate with 28 to form heptaaryl $\mathbf{3 1}$ in 49% overall yield. Further reaction of $\mathbf{3 1}$ with terephthaldehyde in the usual manner afforded the corresponding 17 -mer $\mathbf{3 3}$ in 45% yield. Dithioacetal $\mathbf{3 2}$ was obtained similarly in 68% yield from the annulation of $\mathbf{2 9}$ and 32. Further annulation of $\mathbf{3 2}$ with $\mathbf{5}$ under similar conditions gave the 21 -mer 34 in 66% yield. Notably, the substituents on the furan rings in $\mathbf{3 3}$ and $\mathbf{3 4}$ are different.

Photophysical and Electrochemical Investigations

Alternating benzene-furan oligoaryls showed strong absorption and emission in the visible region. Typical spectra for a series of symmetrical oligoaryls $\mathbf{1 7}$ and $\mathbf{3 4}$ are shown in

Figure 1. a) Absorption and b) emission spectra of $\mathbf{1 7 a}(-\cdot-\cdot), \mathbf{1 7 b}(----)$, $\mathbf{1 7} \mathbf{c}(---), 34(\cdots \cdots)$ and 17 e (-) in THF.

$$
31 \mathrm{R}^{1}=n \mathrm{Bu}, \mathrm{R}^{2}=n \mathrm{Hex}, \mathrm{R}^{3}=n \mathrm{Hex}, \mathrm{R}^{4}=n \mathrm{Bu}
$$

$$
32 \mathrm{R}^{1}=n \mathrm{Bu}, \mathrm{R}^{2}=n \mathrm{Hex}, \mathrm{R}^{3}=n \mathrm{Bu}, \mathrm{R}^{4}=n \mathrm{Hex}
$$

or m

$$
\begin{aligned}
& \begin{aligned}
& \xrightarrow{\longrightarrow} \xrightarrow{\square} \quad 27 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=n \mathrm{Hex}, \mathrm{R}^{3}=n \mathrm{Bu} \\
& 28 \mathrm{R}^{1}=\mathrm{CHO}, \mathrm{R}^{2}=n \mathrm{Bu}, \mathrm{R}^{3}=n \mathrm{Hex} \\
& \longrightarrow 29 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=n \mathrm{Hex}, \mathrm{R}^{3}=n \mathrm{Bu} \\
& \longrightarrow 30 \mathrm{R}^{1}=\mathrm{CHO}, \mathrm{R}^{2}=n \mathrm{Hex}, \mathrm{R}^{3}=n \mathrm{Bu}
\end{aligned}
\end{aligned}
$$

Scheme 4. Formation of alternating benzene-furan oligomers with different substituent groups. a) DIBAL, 98%; b) $\mathrm{MnO}_{2}, 92 \%$; c) 1) 21, $n \mathrm{BuLi},-78^{\circ} \mathrm{C}$, 2) $\mathbf{5}$, 3) TFA; yield of $\mathbf{2 4}=53 \%$; d) 1) $\mathbf{6}, 2$) TFA; yield of $\mathbf{2 6}=50 \%$; e) DIBAL; yield of $\mathbf{2 5}=93 \%$; f) DIBAL; yield of $\mathbf{2 7}=90 \%$;g) $\mathrm{MnO} \mathrm{O}_{2}$; yield of $\mathbf{2 8}=$ 91%; h) MnO_{2}; yield of $\mathbf{3 0}=90 \%$; i) $\mathrm{NaH} / \mathrm{MeI}$; yield of $\mathbf{2 9}=93 \%$; j) 1$) \mathbf{2 9}$, $n \mathrm{BuLi}(1.1$ equiv), 2) $\mathbf{2 8}$, 3) TFA ; yield of $\mathbf{3 1}=49 \%$; k) 1$) \mathbf{2 9}$, $n \mathrm{BuLi}$ (1.1 equiv), 2) 30, 3) TFA; yield of $\mathbf{3 2}=68 \%$; 1) 31, $n \mathrm{BuLi}(1.1$ equiv), 2) terephthaldehyde, 3) TFA; yield of $\mathbf{3 3}=45 \%$; m) 32, $n \mathrm{BuLi}(1.1 \mathrm{equiv}), 2$) $\mathbf{5}$, 3) TFA; yield of $\mathbf{3 4}=66 \%$.

Table 1. Photophysical and electrochemical parameters of benzene-furan oligomers. ${ }^{[a]}$

	$n^{[b]}$	$\begin{aligned} & \lambda_{\max } \\ & {[\mathrm{nm}]} \end{aligned}$	$\begin{aligned} & \lambda_{\mathrm{em}}\left(\Phi_{\mathrm{f}}\right) \\ & {[\mathrm{nm}]} \end{aligned}$	$\begin{aligned} & E_{0-0} \\ & {[\mathrm{eV}]} \end{aligned}$	$\begin{aligned} & E_{\mathrm{p}}^{1 / 2[c]} \\ & {[\mathrm{mV}]} \end{aligned}$	HOMO [eV]	$\begin{aligned} & \text { LUMO } \\ & {[\mathrm{eV}]} \end{aligned}$
17a	12	328	$\begin{aligned} & 364,383,404 \\ & (0.88) \end{aligned}$	3.47	622	-5.36	-1.89
17b	20	376	$\begin{aligned} & 420,446,475 \\ & (0.84) \end{aligned}$	3.02	441	-5.20	-2.18
17c	52	414	$\begin{aligned} & 474,503,536 \\ & (0.33) \end{aligned}$	2.71	206	-4.98	-2.27
34	84	422	$\begin{aligned} & 478,509,544 \\ & (0.29) \end{aligned}$	2.66	98	-4.87	-2.21
17 e	148	423	$\begin{aligned} & 479,509,544 \\ & (0.23) \end{aligned}$	2.66	-21	-4.74	-2.08

[a] Absorption and fluorescence spectra were acquired in THF. [b] Total number of carbon atoms along the conjugated oligoaryl chain. [c] The potentials reported are referenced to the ferrocene/ferrocenium couple.

Figure 1, and their photophysical data are outlined in Table 1. As expected, the absorption maxima showed bathochromic shift as the conjugation lengths increased. These oligoaryls are also highly fluorescent with high quantum yield. The absorption and emission reached saturation in $\mathbf{3 4}$ (21-mer) and little change was observed in higher homologues (Table 1). As shown in Figure 1 b, the relative intensities of the emission due to $0-0$ transition increased with in-
creasing chain lengths. Interestingly, the quantum yield decreased with increasing molecular weights of the oligomers.

The first oxidation parameters, $E_{\mathrm{p}}^{1 / 2}$, of 17 and 34 measured by cyclic voltammetry are also listed in Table 1. Notably, the oxidation potential continually shifted to the lesspositive end as the molecular weights of the oligomers increased, and there is a significant difference $(119 \mathrm{mV})$ in $E_{\mathrm{p}}^{1 / 2}$ between the 21-mer and 37-mer compounds. Similar behavior was also observed in alternating ethynylene-thiophene oligomers. ${ }^{[11]}$

The energies of the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LOMOs, respectively) of the alternating benzene-furan oligoaryls were estimated based on the photophysical and electrochemical data in Table 1 and are shown there. Plots of the HOMO and LUMO energies and the band gaps of $\mathbf{1 7}$ and $\mathbf{3 4}$ against $1 / n$, where n is the total number of carbon atoms in the conjugated oligoaryl chain, are shown in Figure 2, and compared with those of oligothiophenes $\mathbf{3 5},{ }^{[5]}$ oligofurans $\mathbf{3 6},{ }^{[7]}$ and oligoethynylenethiophenes $37{ }^{[11]}$ calculated from literature data. Surprisingly, replacement of alternating furan moieties along oligofuran chains by benzene rings may not significantly perturb the frontier orbital energies of oligofurans when the conjugation length is short $(n<24)$. However,

Figure 2. Plots of a) HOMO (solid) and LUMO (open) energies and b) of $\mathbf{1 7}$ and $\mathbf{3 4}$ (circle), $\mathbf{3 5}$ (diamond), $\mathbf{3 6}$ (triangle), and 37 (square) versus $1 / n$.

when the conjugation length is increased, both the HOMO and LUMO energies of $\mathbf{1 7} \mathbf{c}-\mathbf{e}$ and $\mathbf{3 4}$ started to deviate from the linearly extrapolated values based on the smaller analogues of oligofurans.
Interestingly, the slope from the plot of the band gaps of 17 and 34 against $1 / n$ was smaller than that from the plot of 36. This observation indicates that the variation in band gap may be less sensitive towards the change in conjugation length. Similar results were also observed for 37. ${ }^{[11]}$

Conclusions

In summary, we have demonstrated a rapid convergent/divergent approach for the synthesis of a range of oligoaryls
that contain alternating benzene-furan rings. These oligomers are fairly soluble in a range of organic solvents, thus simplifying their purification. In particular, oligomers with relatively high molecular weights can be easily purified by reprecipitation. This advantage would allow convenient synthesis and isolation of the higher homologues. An extension towards the rapid synthesis of polymers with unity dispersity would therefore be feasible. Furthermore, since the syntheses involve stepwise procedures, the substituents on the furan rings can be varied depending on the substituents in the starting propargylic dithioacetals. This strategy would provide a promising route towards polymers without repeated units (Scheme 4). Since pyrrole derivatives can also be synthesized by this method, ${ }^{[10]}$ incorporation of such nitrogen heterocycles could be possible.

These alternating benzene-furan oligoaryls are highly fluorescent in the visible region and electrochemically active. The band gaps of these oligomers appeared to be less sensitive towards changes in conjugation length than those of homo-oligomers such as $\mathbf{3 5}$ and 36. Oligoethynylenethienylenes 37 behave similarly to the oligoaryls. ${ }^{[11]}$ Our results indicate that insertion of benzene moieties into oligofurans may fine-tune the conjugated π-systems for further applications.

Experimental Section

Syntheses

4: $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(66.4 \mathrm{~mL}, 0.53 \mathrm{~mol})$ and 1,2-ethanedithiol $(37.8 \mathrm{~mL}$, 0.45 mol) was added to a solution of $\mathbf{1 8} \mathbf{a}(107.4 \mathrm{~g}, 0.44 \mathrm{~mol})$ in MeOH $(700 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature and stirred for 12 h . After quenching with $\mathrm{NaOH}(10 \%, 400 \mathrm{~mL})$, the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{NaOH}(10 \%, 5 \times 300 \mathrm{~mL})$ and brine (300 mL), dried over MgSO_{4}, filtered, and evaporated in vacuo. The resulting residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 9$) to afford 4 as a pale yellow oil. The product was dissolved in pentane and cooled in the freezer, and pure 4 crystallized as colorless needles ($87.4 \mathrm{~g}, 62 \%$). M.p.: $46-47^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2960,2934,2870,1726,1610,1437,1408$, 1280, 1193, 1111, 1021, 966, 869, 735, $496 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl} 3): \delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.43$ (sext., ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.56\left(\mathrm{tt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.35\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 3.59-3.75 (m, 4H), 3.89 (s, 3H), 7.98 ppm (br s, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.6,18.9,22.0,30.6,41.4,52.1,61.7,81.7,88.7$, 127.7, 129.4, 129.8, 145.1, 166.6 ppm ; HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$: 320.0905; found: 320.0910 ; elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 63.72, H 6.29; found: C 63.68, H 5.89.
19: DIBAL ($150.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexane, 150.0 mmol) was added slowly with stirring to a solution of $\mathbf{4}(10.7 \mathrm{~g}, 33.5 \mathrm{mmol})$ in THF $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was stirred for 2 h at room temperature, then saturated $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ was poured in slowly to quench the reaction. The gel-like organic layer was then acidified with $\mathrm{HCl}(6 \mathrm{~m}, 200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(2 \times 150 \mathrm{~mL})$ and brine (200 mL), dried over MgSO_{4}, filtered, and evaporated in vacuo to afford crude $19(9.4 \mathrm{~g}, 97 \%)$. Kugelrohr distillation $\left(0.01\right.$ torr, $\left.170^{\circ} \mathrm{C}\right)$ afforded a pure colorless oil. IR (KBr): $\tilde{v}=3354,2956,2928,2870,1507$, $1458,1414,1209,1043,1016,852,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.43\left(\right.$ sext., $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.55$ (quint., $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.60-1.78$ (br s, 1H), $2.35\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.74(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 7.32\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}\right.$,
$2 \mathrm{H}), 7.92 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=13.6,18.9,22.0,30.7,41.2,62.0,64.9,82.2,88.1,126.6,127.8,139.0$, 140.9 ppm ; elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{OS}_{2}$: C 65.71, H 6.89; found: C 65.33, H 6.63 .
8: A solution of $19(34.9 \mathrm{~g}, 0.12 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added slowly to a suspension of activated $\mathrm{MnO}_{2}(104.3 \mathrm{~g}, 1.20 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 6 h , then passed through a silica-gel bed $(5 \mathrm{~cm})$ and washed with EtOAc ($5 \times$ 300 mL). The combined filtrate was evaporated in vacuo to afford crude 8 as an orange oil. The crude product was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 3$) to afford $\mathbf{8}(32.0 \mathrm{~g}, 92 \%)$ as a pale yellow oil. IR (KBr): $\tilde{v}=2957,2929,2870,2860,2734,1701,1603$, 1574, 1417, 1387, 1303, 1208, 1169, 1015, 814, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.45$ (sext., ${ }^{3} J$ $(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.56\left(\mathrm{tt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.35\left(\mathrm{t},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.74(\mathrm{~m}, 4 \mathrm{H}), 7.83$ and $8.09\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.0, \quad 0.4,1.9,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 10.00 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,18.9,22.1,30.6,41.6,61.7,81.5,89.0,128.3$, 129.5, 135.9, 146.9, 191.6 ppm ; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}_{2}$: 290.0799; found: 290.0792; elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}_{2}$: C 66.16, H 6.25; found: C 66.02, H 6.09 .
9: Under argon, $n \mathrm{BuLi}(13.2 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 33.0 mmol) was introduced dropwise to a solution of $4(9.6 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF (200 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 50 min . A solution of $\mathbf{8}$ $(7.2 \mathrm{~g}, 25.0 \mathrm{mmol})$ in THF (40 mL) was added at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then gradually warmed to room temperature. After further stirring for 1 h , TFA ($5.5 \mathrm{~mL}, 60.0 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature overnight. The reaction was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$, and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and brine (100 mL), then dried over MgSO_{4}, filtered, and evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 1:3) to give $9(7.32 \mathrm{~g}, 56 \%)$ as a pale yellow solid. M.p.: $98-99^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2954,2929,2869,1720,1609,1503,1434,1278$, 1177, 1108, 933, 856, 771, 718, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.94\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.69\left(\mathrm{t},{ }^{3} \mathrm{~J}-\right.$ $(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.74\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.00\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.04 \mathrm{ppm} \quad\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.6,13.9,18.9,22.1,22.6,25.7,30.8,32.1,41.3$, $52.0,62.1,82.2,88.3,111.5,123.2,124.9,125.3,128.0,128.3,130.1,131.1$, 134.7, 138.4, 148.8, 150.9, 166.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{~S}_{2}: 519.2028\left[M^{+}+\mathrm{H}\right]$; found: 519.2027 ; elemental analysis: calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}_{2}$: C 71.78, H 6.61; found: C 71.65, H 6.58 .
11: As with the preparation of $\mathbf{1 9}, \mathbf{9}(4.0 \mathrm{~g}, 7.7 \mathrm{mmol})$ was treated with DIBAL ($23.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexane, 23.0 mmol) to afford $11(3.6 \mathrm{~g}, 97 \%$) as a pale yellow solid. M.p.: $60-61^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=3244,2954,2925$, 2856, 1605, 1505, 1456, 1421, 1364, 1289, 1188, 1047, 1014, 933, 843, 808, $708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 4 \mathrm{H})$, $1.76-1.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.68\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.76(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.36\left(\mathrm{~d},{ }^{3}{ }^{3}-\right.$ $(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.69\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.6,14.0,18.9,22.1,22.6,25.8,30.7,32.1,41.3,62.1,65.1$, $82.2,88.2,109.3,123.8,124.6,125.0,127.3,127.9,130.1,131.4,137.7$, 139.8, $147.5,151.8 \mathrm{ppm}$; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~S}_{2}$: $491.2078\left[M^{+}+\mathrm{H}\right]$; found: 491.2068; elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 73.43, H 6.98; found: C 73.42, H 6.62.
$\mathbf{1 0}$: As with the preparation of $\mathbf{8}, \mathbf{1 1}(3.7 \mathrm{~g}, 7.7 \mathrm{mmol})$ was treated with activated $\mathrm{MnO}_{2}(6.7 \mathrm{~g}, 77.1 \mathrm{mmol})$ to afford $\mathbf{1 0}(3.5 \mathrm{~g}, 93 \%)$ as a fluorescent yellow solid. M.p.: $68-70^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2954,2928,2860,2689$, 1601, 1503, 1481, 1400, 1305, 1217, 1169, 931, 832, 764, 708, $669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.96(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.38-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{t},{ }^{3} \mathrm{~J}-\right.$ $(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.63-3.76(\mathrm{~m}, 4 \mathrm{H})$,
$6.83(\mathrm{~s}, 1 \mathrm{H}), 7.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.82\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.87\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $9.97 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,13.9,18.9,22.1$, $22.6,25.7,30.8,32.1,41.3,62.1,82.2,88.3,112.4,123.7,125.1,125.4,128.0$, 130.3, 131.0, 134.8, 136.0, 138.7, 149.4, 150.6, $191.4 \mathrm{ppm} ; \mathrm{HRMS}^{\left(\mathrm{FAB}^{+}\right) \text {: }}$ m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}_{2}: 489.1922\left[M^{+}+\mathrm{H}\right]$; found: 489.1920; elemental analysis: calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 73.73, H 6.60; found: C 73.57, H 6.53.

12: A solution of $\mathbf{1 1}(1.6 \mathrm{~g}, 3.3 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was introduced into a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 0.20 g , 4.9 mmol prewashed with hexane) in THF (30 mL) at room temperature under N_{2} atmosphere. After 1 h of stirring, MeI ($0.4 \mathrm{~mL}, 6.6 \mathrm{mmol}$) was added, and the reaction was stirred for 3 h at room temperature. The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and evaporated in vacuo to afford the residue, which was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 3$) to afford $\mathbf{1 2}$ $(1.5 \mathrm{~g}, 94 \%)$ as a light yellow solid. M.p.: $75-76^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): \tilde{v}=2954$, 2922, 2855, 1604, 1504, 1487, 1456, 1376, 1199, 1103, 1060, 970, 933, 846, 811, 791, 763, 710, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.93\left(\mathrm{t},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37-1.53(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.68\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.76(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$, $7.34\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.64\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.98 \mathrm{ppm} \quad\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.0,18.9,22.1,22.6,25.8,30.8,32.1,41.3$, $58.1,62.2,74.5,82.2,88.2,109.3,123.7,124.6,125.1,127.9,128.1,130.2$, $131.5,137.2,137.8,147.6,151.9 \mathrm{ppm}$; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2}$: $504.2157\left[M^{+}\right]$; found: 504.2169 ; elemental analysis: calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 73.77, H 7.19; found: C 73.48, H 7.09.
13: As with the preparation of $\mathbf{9}, \mathbf{1 2}(504 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(0.5 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 1.1 mmol$)$, followed by $\mathbf{1 0}(391 \mathrm{mg}$, $0.8 \mathrm{mmol})$ and then TFA ($0.3 \mathrm{~mL}, 3.3 \mathrm{mmol}$) to afford $\mathbf{1 3}$ as an orange yellow solid ($658 \mathrm{mg}, 73 \%$). M.p.: $70-71^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2954,2927$, 2857, 1666, 1601, 1503, 1465, 1378, 1185, 1101, 933, 839, 807, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.93\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.96(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.97\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.98\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 6 \mathrm{H})$, $2.38\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.64-2.80(\mathrm{~m}, 6 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.76$ $(\mathrm{m}, 4 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.36\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.84(\mathrm{~m}, 12 \mathrm{H}), 8.01 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.0,18.9,22.1,22.6,25.9$, $26.0,30.8,32.1,41.3,58.1,62.2,74.5,82.3,88.2,109.5,109.7,123.7,123.8$, $124.5,124.7,124.9,125.1,125.6,127.9,128.1,128.9,130.2,130.5,131.5$, 137.2, 137.9, 147.7, 147.8, 147.9, 151.7, 151.8, 151.9 ppm ; HRMS (FAB ${ }^{+}$): m / z calcd for $\mathrm{C}_{59} \mathrm{H}_{65} \mathrm{O}_{4} \mathrm{~S}_{2}: 901.4324\left[M^{+}+\mathrm{H}\right]$; found: 901.4332; elemental analysis: calcd (\%) for $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 78.63, H 7.16; found: C 78.33, H 6.99 .

16: As with the preparation of $\mathbf{9}, \mathbf{1 1}(2.4 \mathrm{~g}, 5.0 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(4.1 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 10.2 mmol$)$, followed by $\mathbf{1 0}(2.0 \mathrm{~g}$, $4.2 \mathrm{mmol})$ and then TFA $(1.35 \mathrm{~mL}, 15 \mathrm{mmol})$ to afford $\mathbf{1 6}$ as a yelloworange solid ($2.7 \mathrm{~g}, 70 \%$). M.p.: $89-90^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$; $\mathrm{IR}(\mathrm{KBr}): \tilde{v}=$ 3391, 2955, 2928, 2869, 1610, 1503, 1465, 933, 840, 808, 758, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95-1.02(\mathrm{~m}, 12 \mathrm{H}), 1.47-1.50(\mathrm{~m}, 8 \mathrm{H})$, $1.54-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 6 \mathrm{H}), 2.41\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $2.73-2.75(\mathrm{~m}, 6 \mathrm{H}), 3.71-3.75(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.39\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68-7.80(\mathrm{~m}, 12 \mathrm{H})$, $8.02 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $13.6,14.0,18.9,22.1,22.6,25.8,25.9,30.8,32.05,32.09,41.3,62.2,65.2$, $82.2,88.2,109.5,109.7,123.8,124.5,124.7,124.9,125.1,125.5,127.4$, $127.9,128.9,130.2,130.39,130.43,131.5,137.8,139.8,147.7,147.8,147.9$, 151.71, 151.74, 151.9 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{58} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{~S}_{2}$: $886.4090\left[M^{+}\right]$; found: 886.4098.
15: A solution of $\mathbf{1 6}(786 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dry DMSO (40 mL) and acetic anhydride (5 mL) was allowed to stand for 3 days at room temperature and then carefully poured into saturated NaHCO_{3} solution $(200 \mathrm{~mL})$. The mixture was stirred for 1 h and extracted with diethyl
ether $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with water $(3 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated to afford $\mathbf{1 5}$ as a yellow-orange solid $(615 \mathrm{mg}, 78 \%)$. M.p.: 88$89^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$; IR (KBr): $\tilde{v}=2955,2928,1697,1650,1602,1504$, 1464, 1427, 1164, 1125, 1091, $838 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 0.95-1.01 (m, 12H), 1.44-1.52 (m, 8H), 1.58-1.64 (m, 2H), 1.68-1.72 (m, $6 \mathrm{H}), 2.40\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.70-2.77(\mathrm{~m}, 6 \mathrm{H}), 3.71-3.74(\mathrm{~m}$, $4 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.68\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.74-7.82(\mathrm{~m}, 8 \mathrm{H}), 7.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}-\right.$ $(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.02\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 10.00 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,13.96,13.98,18.9,22.1,22.6,22.7$, 25.7, 25.9, 26.0, 29.7, 30.8, 32.0.32.1, 41.3, 62.1, 82.2, 88.2, 109.6, 110.0, $112.4,112.6,123.7,123.8,124.7,124.9,125.0,125.1,125.6,125.8,127.9$, $129.0,129.5,129.8,130.3,130.4,131.5,134.7,136.0,137.8,147.7,149.5$, $150.4,151.5,151.8,191.5 \mathrm{ppm}$; HRMS (FAB^{+}): m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{~S}_{2}$: $884.3937\left[M^{+}\right]$; found: 884.3933; elemental analysis: calcd (\%) for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 78.69, H 6.83; found: C 78.43, H 6.93.
20: As with the preparation of $\mathbf{9}, \mathbf{1 3}(458 \mathrm{mg}, 0.5 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(0.3 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 0.7 mmol$)$, followed by $15(360 \mathrm{mg}$, $0.41 \mathrm{mmol})$ and then TFA ($0.18 \mathrm{~mL}, 2.0 \mathrm{mmol}$) to afford $\mathbf{2 0}$ as an orange yellow solid ($504 \mathrm{mg}, 73 \%$). M.p.: $131-133^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2954,2928$, 2874, 2859, 1503, 933, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92-$ $1.05(\mathrm{~m}, 24 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 16 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.79(\mathrm{~m}$, $14 \mathrm{H}), 2.40\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.70-2.85(\mathrm{~m}, 14 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$, $3.67-3.80(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.65-6.78(\mathrm{~m}, 7 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.85(\mathrm{~m}, 28 \mathrm{H}), 8.01 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.0,18.9,22.1,22.7,25.9,26.0$, $30.8,32.1,41.3,58.1,62.2,74.5,82.2,88.2,109.5,109.7,123.7,123.9,124.5$, $124.7,124.9,125.1,125.6,127.9,128.1,128.9,130.2,130.4,131.5,137.2$, 137.8, 147.8, 147.9, 151.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{115} \mathrm{H}_{120} \mathrm{O}_{8} \mathrm{~S}_{2}: 1692.8425\left[M^{+}\right]$; found: 1692.8451.
17a: As with the preparation of $\mathbf{1 2}, \mathbf{1 7} \mathbf{f}^{[9]}(336 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $121 \mathrm{mg}, 3.0 \mathrm{mmol})$ followed by MeI ($0.25 \mathrm{~mL}, 4.0 \mathrm{mmol}$) to afford $\mathbf{1 7 a}(335 \mathrm{mg}, 92 \%)$ as a light yellow oil. IR (KBr): $\tilde{v}=2927,2858,2821,1616,1509,1492,1456,1380,1192$, $1100,967,934,844,819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94\left(\mathrm{t},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (sext., $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.66\left(\mathrm{tt},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.40$ $(\mathrm{s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.34\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.38\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.68 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 13.9, 22.6, 25.7, 32.1, 58.0, 58.1, 74.5, 109.2, 123.7, 124.1, 125.5, 128.0, 128.1, 130.3, 131.2, 136.7, 137.1, 147.8, 151.8 ppm ; HRMS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}: 364.2038$; found: 364.2030 ; elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}$: C 79.09, H 7.74; found: C 79.03, H 7.53
$\mathbf{1 7 b}$: As with the preparation of $\mathbf{1 2}, \mathbf{1 7} \mathbf{g}^{[9]}(51.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $12.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ followed by MeI $(0.025 \mathrm{~mL}, 0.4 \mathrm{mmol})$ to afford $\mathbf{1 7 b}(48 \mathrm{mg}, 90 \%)$ as a light yellow solid. M.p.: $125-126^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2952,2925,2856,2819$, $1613,1508,1487,1456,1380,1299,1190,1101,1057,933,834,811 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.96\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.46$ (sext., $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.69\left(\mathrm{tt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3,7.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.73(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.39(\mathrm{~s}, 6 \mathrm{H}), 4.46(\mathrm{~s}, 4 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.35\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.75 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,22.7,25.9,32.1,58.1,74.5,109.4$, 123.7, 124.5, 125.4, 128.1, 129.9, 130.2, 137.1, 147.7, 151.8 ppm ; HRMS (EI): m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{4}$: 562.3083; found: 562.3080; elemental analysis: calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{4}$: C 81.10, H 7.52; found: C 80.95, H 7.46.
$\mathbf{1 7} \mathbf{c}$: As with the preparation of $\mathbf{1 2}, \mathbf{1 7} \mathbf{h}^{[10 b]}(133 \mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $12.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ followed by MeI ($0.025 \mathrm{~mL}, 0.4 \mathrm{mmol}$) to afford $\mathbf{1 7 c}(115 \mathrm{mg}, 85 \%)$ as a light yellow solid. M.p.: $141-142^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95-1.01$ $(\mathrm{m}, 18 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 12 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 12 \mathrm{H}), 2.70-2.78(\mathrm{t}, 12 \mathrm{H})$, $3.39(\mathrm{~s}, 6 \mathrm{H}), 4.46(\mathrm{~s}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.69-7.79 \mathrm{ppm}(\mathrm{m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta=14.0$ (d), 22.7 (d), 25.9 (d), 32.1 (d), $58.1,74.5,109.5,109.7$, 123.7, 123.8, 124.5, 124.7, 125.4, 125.5, 128.1, 128.9 (d), 129.9, 130.2, 130.4, 137.1, 147.7, 147.8, 151.7 ppm .
$\mathbf{1 7 d}$: Under an Ar atmosphere, $n \mathrm{BuLi}(0.21 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 0.53 mmol) was added in one portion to a solution of $13(446 \mathrm{mg}$, $0.49 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . A solution of terephthaldehyde $(26.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was then added slowly at the same temperature. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$ slowly. Then TFA $(0.30 \mathrm{~mL}, 3.3 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at $30^{\circ} \mathrm{C}$ overnight. The mixture was washed with saturated $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. Further purification by silica-gel chromatography with hexane/ethyl acetate (10:1) afforded $\mathbf{1 7 d}$ as an orange yellow solid ($81 \mathrm{mg}, 23 \%$). M.p.: 109$110^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2955,2928,2858,1600,1504,1464,1455,1379,1181$, 1101, $933,839,808 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.00(\mathrm{~m}, 24 \mathrm{H})$, $1.50(\mathrm{~m}, 16 \mathrm{H}), 1.72(\mathrm{~m}, 16 \mathrm{H}), 2.75(\mathrm{~m}, 16 \mathrm{H}), 3.41(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.75 \mathrm{ppm}(\mathrm{m}, 32 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$, 22.7, 25.9, 26.0, 32.1, 58.1, 74.5, 109.5, 109.7, 123.7, 123.9, 124.5, 124.7, $125.5,125.6,128.1,128.9,130.0,130.2,130.4,137.2,147.7,147.9$, 151.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{122} \mathrm{H}_{126} \mathrm{O}_{10}: 1750.9351\left[M^{+}+\right.$ H]; found: 1750.9352 .
17e: Under Ar atmosphere, $n \mathrm{BuLi}(0.2 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 0.5 mmol) was added in one portion to a solution of $\mathbf{2 0}(507 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ at $-65^{\circ} \mathrm{C}$, and the mixture was stirred for 90 min . A solution of $5(53 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was then added slowly at the same temperature. The mixture was stirred for 1 h at $-65^{\circ} \mathrm{C}$, and allowed to warm slowly to $0^{\circ} \mathrm{C}$. TFA ($0.18 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was then added at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at $30^{\circ} \mathrm{C}$ overnight, washed with saturated $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. The resulting residue was recrystallized from CHCl_{3} to afford $\mathbf{1 7 e}$ as an orange yellow solid ($288 \mathrm{mg}, 77 \%$). M.p.: $181-182^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=$ 2956, 2932, 2870, 2853, 1607, 1503, 1101, 932, 837, 759, 746, $669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94-1.07(\mathrm{~m}, 54 \mathrm{H}), 1.42-1.60(\mathrm{~m}, 36 \mathrm{H})$, $1.63-1.80(\mathrm{~m}, 36 \mathrm{H}), 2.70-2.85(\mathrm{~m}, 36 \mathrm{H}), 3.41(\mathrm{~s}, 6 \mathrm{H}), 4.47(\mathrm{~s}, 4 \mathrm{H}), 6.60-$ $6.75(\mathrm{~m}, 18 \mathrm{H}), 7.36\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.68-7.84 \mathrm{ppm}(\mathrm{m}, 72 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.0,22.7,26.0,32.0,58.0,74.4$, $109.5,109.6,123.6,123.7,124.6,125.5,130.3,137.1,147.7$, 147.8, 151.7 ppm ; MS (MALDI-TOF): m / z calcd for $\mathrm{C}_{262} \mathrm{H}_{266} \mathrm{O}_{20}: 3734.9\left[M^{+}+\right.$ H]; found: 3735.7.
21: As with the preparation of $\mathbf{4}, \mathbf{1 8 b}(120.2 \mathrm{~g}, 0.44 \mathrm{~mol})$ was treated with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(66.4 \mathrm{~mL}, 0.53 \mathrm{~mol})$ and 1,2-ethanedithiol ($37.8 \mathrm{~mL}, 0.45 \mathrm{~mol}$) to afford 21 as a white solid ($62.8 \mathrm{~g}, 41 \%$). M.p.: $75-77^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=$ 2929, 2857, 1931, 1724, 1607, 1435, 1406, 1277, 1191, 1109, 1019, , $734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $1.30-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.36\left(\mathrm{t},{ }^{3} J_{-}\right.$ $(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 8.00 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,19.1,22.5,28.4,28.5,31.2,41.4$, 52.1, 61.7, 81.7, 88.7, 127.6, 129.3, 129.7, 145.0, 166.6 ppm; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}$: $349.1296\left[M^{+}+\mathrm{H}\right]$; found: 349.1290; elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 65.48, H 6.94; found: C 65.71, H 6.77.
22: As with the preparation of $\mathbf{1 9}, 21(11.6 \mathrm{~g}, 33.5 \mathrm{mmol})$ was treated with DIBAL ($150.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexane, 150 mmol) to afford 22 as colorless oil ($10.5 \mathrm{~g}, 98 \%$). IR (KBr): $\tilde{v}=3399,2954,2927,2856,1902,1660$, 1535, 1503, 1459, 1413, 1372, 1213, 1044, 1016, 812, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.90\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.30-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.41-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.65\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.36$ $\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.65-3.73(\mathrm{~m}, 4 \mathrm{H}), 4.69\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.33\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.94 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,19.2,22.6,28.6,31.3,41.2,62.0$, $65.0,82.3,88.2,126.7,127.9,139.0,140.9 \mathrm{ppm} ;$ HRMS $^{\left(\mathrm{FAB}^{+}\right): ~ m / z ~ c a l c d ~}$ for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{OS}_{2}: 321.1347\left[M^{+}+\mathrm{H}\right]$; found: 321.1352.
23: As with the preparation of $\mathbf{8 , 2 2}(38.4 \mathrm{~g}, 0.12 \mathrm{~mol})$ was treated with activated $\mathrm{MnO}_{2}(104.3 \mathrm{~g}, 1.20 \mathrm{~mol})$ to afford $\mathbf{2 3}$ as a pale yellow oil ($35.1 \mathrm{~g}, 92 \%$). IR (KBr): $\tilde{v}=2961,2927,2856,2732,1702,1603,1574$, 1463, 1416, 1389, 1301, 1208, 1168, 1017, 813, $755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.29-1.32(\mathrm{~m}, 4 \mathrm{H})$, $1.39-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.36\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $3.66-3.74(\mathrm{~m}, 4 \mathrm{H}), 7.83\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.10\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$
$8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $10.00 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$, 19.1, 22.5, 28.4, 28.6, 31.1, 41.5, 61.7, 81.5, 89.0, 128.3, 129.4, 135.9, 146.8, 191.6 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{OS}_{2}: 319.1190\left[M^{+}+\mathrm{H}\right]$; found: 319.1183.

24: As with the preparation of $\mathbf{9 , 2 1}(10.4 \mathrm{~g}, 30.0 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(13.2 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 33.0 mmol), followed by $\mathbf{8}(7.2 \mathrm{~g}$, $25.0 \mathrm{mmol})$ and then TFA ($5.5 \mathrm{~mL}, 60.0 \mathrm{mmol}$) to afford $24(7.2 \mathrm{~g}, 53 \%$) as a pale yellow solid. M.p.: $72-73^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): \tilde{v}=2959,2932,2846$, 1722, 1611, 1434, 1282, 1110, $670.21 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.33-$ $1.34(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.68-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 7.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.75\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.01\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.05 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.1,18.9,22.1,22.6$, 26.0, 29.2, 29.9, 30.7, 31.7, 41.3, 52.0, 62.1, 82.1, 88.3, 111.5, 123.2, 125.0, $125.3,128.0,128.3,130.1,131.1,134.7,138.4,148.7,150.9,166.8 \mathrm{ppm}$; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~S}_{2}: 547.2341\left[M^{+}+\mathrm{H}\right]$; found: 547.2332.

25: As with the preparation of $\mathbf{1 9}, \mathbf{2 4}(4.2 \mathrm{~g}, 7.7 \mathrm{mmol})$ was treated with DIBAL ($23.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexane, 23.0 mmol) to afford $25(3.7 \mathrm{~g}, 92 \%$) as a pale yellow solid. M.p.: $72-73^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=3371,2959,2927$, 2861, 1613, 1502, 1460, 1424, 1010, 851, $804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.91\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $1.32-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.69-3.75(\mathrm{~m}, 4 \mathrm{H})$, $4.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.39\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.65\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.99 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 13.6, 14.0, 18.9, 22.1, 22.6, 26.1, 29.2, 29.9, 30.7, 31.7, 41.3, 62.1, 65.2, 82.2, $88.2,109.3,123.8,124.7,125.1,127.4,127.9,130.2,131.4,137.7,139.8$, $147.5,151.8 \mathrm{ppm}$; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{~S}_{2}: 519.2391$ $\left[M^{+}+\mathrm{H}\right]$; found: 519.2386.
26: As with the preparation of $\mathbf{9}, \mathbf{4}(9.61 \mathrm{~g}, 30.0 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(13.2 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 33.0 mmol$)$, followed by $23(7.9 \mathrm{~g}$, $25.0 \mathrm{mmol})$ and then TFA ($5.5 \mathrm{~mL}, 60.0 \mathrm{mmol}$) to afford $26(6.8 \mathrm{~g}, 50 \%)$ as a pale yellow solid. M.p.: $63-64^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2955,2928,2857$, 2734, 1698, 1604, 1308, 1213, 1166, 937, 832, 765, $712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.97\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 4 \mathrm{H})$, $2.37\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.71\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.70-3.74$ $(\mathrm{m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 7.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.85$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.02\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.05 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.0,19.2$, $22.5,22.6,25.7,28.6,31.3,32.0,41.3,52.0,62.0,82.1,88.3,111.5,123.2$, $124.9,125.2,128.0,128.3,130.1,131.1,134.6,138.3,148.7,150.9$, 166.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right)$: calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~S}_{2}$): $547.2338\left[M^{+}+\mathrm{H}\right]$; found: 547.2341; elemental analysis: calcd (\%) for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~S}_{2}$: C 72.49, H 7.00; found: C 72.58, H 6.94 .
27: As with the preparation of $\mathbf{1 9}, \mathbf{2 6}(4.2 \mathrm{~g}, 7.7 \mathrm{mmol})$ was treated with DIBAL ($23.0 \mathrm{~mL}, 1.0 \mathrm{~m}$ in hexane, 23.0 mmol) to afford $27(3.6 \mathrm{~g}, 90 \%)$ as a pale yellow oil. IR (KBr): $\tilde{v}=3450,2954,2927,2857,1912,1603$, 1504, 1464, 1422, 1378, 1185, 1050, 1015, 934, 844, $808 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.91\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.97\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H})$, $2.38\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.70\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.70-3.75$ $(\mathrm{m}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.39\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.66$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,19.2,22.6$, $25.8,28.6,31.3,32.1,41.3,62.1,65.2,82.2,88.3,109.4,123.9,124.6,125.1$, 127.4, 127.9, 130.2, 131.5, 137.8, 139.8, 147.6, 151.8 ppm ; HRMS (FAB ${ }^{+}$): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{~S}_{2}: 519.2391\left[M^{+}+\mathrm{H}\right]$; found: 519.2386.
28: As with the preparation of $\mathbf{8 , 2 5}(3.9 \mathrm{~g}, 7.7 \mathrm{mmol})$ was treated with activated $\mathrm{MnO}_{2}(6.7 \mathrm{~g}, 77.1 \mathrm{mmol})$ to afford $28(3.6 \mathrm{~g}, 91 \%)$ as a fluorescent yellow solid. M.p.: $42-43^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=2959,2932,2860,1700$, 1606, 1429, 1415, 1168, $834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88-$ $0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.96\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.38-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.37\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.70\left(\mathrm{t},{ }^{3} J-\right.$
$(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.76(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.87\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 8.01\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 9.97 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6,14.1,18.9,22.5,26.1,29.2,29.9,30.7,31.7$, 41.3, 62.0, 82.1, 88.3, 112.4, 123.7, 125.2, 125.3, 128.0, 130.4, 130.9, 134.7, 136.0, 138.5, 149.3, 150.6, 191.5 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~S}_{2}$: $517.2235\left[M^{+}+\mathrm{H}\right]$; found: 517.2227.
29: As with the preparation of $\mathbf{1 2}, \mathbf{2 7}(1.7 \mathrm{~g}, 3.2 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $0.2 \mathrm{~g}, 4.9 \mathrm{mmol}$) followed by MeI $(0.4 \mathrm{~mL}, 6.5 \mathrm{mmol})$ to afford $29(1.6 \mathrm{~g}, 92 \%)$ as a light yellow solid. M.p.: $57-58^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2955,2928,2857,2230,1906,1597,1505,1490$, 1465, 1379, 1186, 1101, 930, 847, 808, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.98\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $1.34-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.70-$ $3.75(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.36\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.70\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01 \mathrm{ppm}$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$, 19.2, 22.6, 25.8, 28.6, 31.3, 32.1, 41.2, 58.0, 62.1, 74.4, 82.2, 88.2, 109.3, 123.7, $124.6,125.0,127.9,128.1,130.1,131.5,137.2,137.8,147.5,151.9 \mathrm{ppm}$; HRMS (FAB^{+}): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{~S}_{2}: 533.2548\left[M^{+}+\mathrm{H}\right]$; found: 533.2554; elemental analysis: calcd (\%) for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 74.39, H 7.57; found: C 74.47, H 7.69.
30: As with the preparation of $\mathbf{8 , 2 7}(2.0 \mathrm{~g}, 3.9 \mathrm{mmol})$ was treated with activated $\mathrm{MnO}_{2}(3.0 \mathrm{~g}, 34.5 \mathrm{mmol})$ to afford $\mathbf{3 0}$ as a fluorescent yellow solid $(1.8 \mathrm{~g}, 90 \%)$. M.p.: $62-64^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2953,2927,2851,1698,1603$, 1433, 1213, 1165, $833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91$ ($\mathrm{t},{ }^{3} J-$ $(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.34(\mathrm{~m}, 4 \mathrm{H}), 1.47$ $(\mathrm{m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.72$ $\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.72(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.68\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.90\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 8.03\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 9.99 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$ (d), 19.2, 22.6 (d), 25.7, 28.6 (d), 31.3, 32.1, 41.3, 62.1, 82.2, 88.4, 112.4, 123.7, 125.1, 125.4, 128.0, 130.4, 131.0, 134.7, 136.0, 138.6, 149.3, 150.6, 191.5 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~S}_{2}: 517.2235\left[M^{+}+\mathrm{H}\right]$; found: 517.2227 ; elemental analysis: calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 74.38, H 7.02; found: C 74.73, H 7.05.
31: As with the preparation of $\mathbf{9 , 2 9}(532 \mathrm{mg}, 1.00 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(0.44 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 1.1 mmol$)$, followed by $28(413 \mathrm{mg}$, $0.80 \mathrm{mmol})$ and then TFA ($0.30 \mathrm{~mL}, 3.3 \mathrm{mmol}$) to afford 31 as an orange yellow solid ($376 \mathrm{mg}, 49.2 \%$). M.p.: $63-64^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2959$, 2933, 2861, 2361, 1560, 1543, $1508 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85-$ $1.03(\mathrm{~m}, 12 \mathrm{H}), 1.30-1.38(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.59-1.79(\mathrm{~m}, 8 \mathrm{H})$, $2.40\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.69-2.82(\mathrm{~m}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.80$ $(\mathrm{m}, 4 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.84(\mathrm{~m}, 12 \mathrm{H}), 8.02 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}\right.$, 2 H) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.1,19.3,22.6,22.7,25.9$, 26.0, 26.3, 28.6, 28.7, 29.3, 29.9, 30.9, 31.3, 31.8, 32.1, 32.2, 41.3, 58.1, 62.2, $74.5,82.3,88.3,109.5,109.7,123.7,123.8,124.5,124.8,124.9,125.1,125.6$, $127.9,128.1,128.9,130.2,130.4,131.5,137.2,137.8,147.6,147.7,147.8$, 151.7, 151.8, 151.9 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{63} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{~S}_{2}$: 956.4872 [$\left.M^{+}\right]$; found: 956.4874.

32: As with the preparation of $\mathbf{9 , 2 9}(532 \mathrm{mg}, 1 \mathrm{mmol})$ was treated with BuLi ($0.44 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 1.1 mmol), followed by $30(413 \mathrm{mg}$, $0.80 \mathrm{mmol})$ and then TFA $(0.30 \mathrm{~mL}, 3.3 \mathrm{mmol})$ to afford $\mathbf{3 2}$ as an orange yellow solid ($522 \mathrm{mg}, 68 \%$). M.p.: $107-109^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2955,2928$, 2857, 1906, 1660, 1601, 1504, 1465, 1380, 1192, 1102, $930,840,809 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.99(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.35(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.72$ $(\mathrm{m}, 6 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.75(\mathrm{~m}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.72$ $(\mathrm{m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{ds}, 2 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}-\right.$ $(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.81(\mathrm{~m}, 12 \mathrm{H}), 8.02 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$ (d), 14.1, 19.2, 22.6 (d), 25.9 (d), 26.3, 28.6 (d), 29.3, 29.9, 31.3, 31.7, 32.1 (d), 41.3, 58.1, 62.2, 74.5, $82.3,88.3,109.5,109.6,123.7,123.8,124.5,124.7,124.8,125.0,125.5$, $127.9,128.1,128.9,130.2,130.4,131.5,137.1,137.8,147.7$ (d), 147.8, 151.7, 151.8, 151.9 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): m / z$ calcd for $\mathrm{C}_{563} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{~S}_{2}: 956.4872$
$\left[M^{+}+\mathrm{H}\right]$; found: 956.4863; elemental analysis: calcd (\%) for $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 79.04, H 7.58; found: C 78.50, H 7.55.
33: As with the preparation of $\mathbf{9}, \mathbf{3 1}(287 \mathrm{mg}, 0.30 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(0.20 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 0.5 mmol$)$, followed by terephthaldehyde ($13.4 \mathrm{mg}, 0.10 \mathrm{mmol}$) and then TFA ($0.18 \mathrm{~mL}, 2.0 \mathrm{mmol}$) to afford 33 as an orange yellow solid ($84 \mathrm{mg}, 45 \%$). M.p.: $80-81^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): \tilde{v}=2966,2933,2860,1603,1514,934,840,811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92-1.04(\mathrm{~m}, 24 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 16 \mathrm{H}), 1.40-1.54$ $(\mathrm{m}, 16 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 16 \mathrm{H}), 2.63-2.83(\mathrm{~m}, 16 \mathrm{H}), 3.41(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}$, $4 \mathrm{H}), 6.68-6.74(\mathrm{~m}, 8 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.71-7.87 \mathrm{ppm}$ $(\mathrm{m}, 32 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.7,14.0,22.0,22.7,26.0$, $26.3,29.3,29.9,31.8,32.1,58.1,74.5,109.5,109.7,123.7,123.9,124.5$, 124.8., 125.1, 125.6, 128.2, 128.9, 130.0, 130.2, 130.4, 137.1, 147.7, 147.9, 151.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{130} \mathrm{H}_{142} \mathrm{O}_{10}: 1863.0603$ [$\left.\mathrm{M}^{+}\right]$; found: 1863.0618.
34: As with the preparation of $\mathbf{9}, \mathbf{3 2}(547 \mathrm{mg}, 0.57 \mathrm{mmol})$ was treated with $n \mathrm{BuLi}(0.25 \mathrm{~mL}, 2.5 \mathrm{~m}$ in hexane, 0.63 mmol$)$, followed by $5(106 \mathrm{mg}$, $0.20 \mathrm{mmol})$ and then TFA $(0.18 \mathrm{~mL}, 2.0 \mathrm{mmol})$ to afford 34 as an orange yellow solid ($300 \mathrm{mg}, 66 \%$). M.p.: $165-166^{\circ} \mathrm{C}$; IR (KBr): $\tilde{v}=2956,2929$, 2870, 1660, 1600, 1503, 1465, 1415, 1379, 1262, 1217, 1180, 1101, 933, 839, $809,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.93(\mathrm{~m}, 12 \mathrm{H}), 1.00(\mathrm{~m}$, $18 \mathrm{H}), 1.37$ (m, 16H), 1.47 (m, 20H), 1.72 (m, 20H), 2.75 (m, 20H), 2.75 $(\mathrm{m}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H}), 6.70(\mathrm{~m}, 10 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}$, $1 \mathrm{H}), 7.37\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68-7.81(\mathrm{~m}, 12 \mathrm{H}), 8.02 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J-\right.$ $(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0,14.1,22.7$, 26.0 (d), 26.3, 29.3, 29.9, 31.7, 32.1 (d), 58.1, 74.5, 109.5, 109.7, 123.7, $123.8,124.5,124.7$ (d), 125.4, 125.5, 128.1, 128.9, 129.9, 130.2, 130.4, 137.1, 147.7, 147.8, 151.8 ppm ; HRMS $\left(\mathrm{FAB}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{158} \mathrm{H}_{170} \mathrm{O}_{12}$: $2259.2692\left[M^{+}+\mathrm{H}\right]$; found: 2259.2637.

Electrochemical Measurements

A conventional three-electrode system with a potentiostat/galvanostat (EG\&G PAR 273 A) was employed for electrochemical experiments. The working electrode is a Pt disc with a diameter of 3 mm , the reference electrode is $\mathrm{Ag} / \mathrm{Ag}^{+}\left(10 \mathrm{~mm} \mathrm{AgNO}_{3}\right)$, and a Pt wire was used as the counter electrode. Samples were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing tetrabutylammonium hexafluorophosphate (0.1 m) as the electrolyte, and the solutions were purged with Ar for at least 15 min before electrochemical experiments.

Photophysical Measurements

Absorption and emission spectra were measured with a Hitachi U-3310 spectrometer and a Hitachi F-4500 fluorescence spectrometer, respectively. Spectrometric-grade solvents and quartz cells $\left(1 \times 1 \mathrm{~cm}^{2}\right)$ were used. The molar concentration of the sample solution was about $10^{-5} \mathrm{~m}$. The fluorescence quantum yields were obtained by using the Parker-Reas method. ${ }^{[12]}$ The quantum yield of the oligomers was calculated by Equation (1), in which Φ is the quantum yield, I is the integrated intensity, A is the absorbance at the excitation wavelength, and n is the refractive index. The subscripts f and ref refer to the oligomers and coumarin 1 ($\Phi_{\text {ref }}=0.99$ in EtOAc), respectively.
$\Phi_{\mathrm{f}}=\Phi_{\text {ref }} \times\left(I_{\mathrm{f}} / I_{\text {ref }}\right) \times\left(A_{\text {ref }} / A_{\mathrm{f}}\right) \times\left(n_{\mathrm{f}} / n_{\text {ref }}\right)^{2}$

Acknowledgements

This work is supported by the National Science Council of the Republic of China.
[1] For recent reviews, see: a) Y.-J. Cheng, T.-Y. Luh, J. Organomet. Chem. 2004, 689, 4137-4148; b) P. F. H. Schwab, J. R. Smith, J. Michl, Chem. Rev. 2005, 105, 1197-1279.
[2] For reviews, see: a) J. Roncali, Chem. Rev. 1992, 92, 711-738; b) R. D. McCullogh, Adv. Mater. 1998, 10, 93-116; c) J. Roncali, J. Mater. Chem. 1999, 9, 1875-1893; d) Handbook of Oligo- and Polythiophenes (Ed.: D. Fichou), Wiley-VCH, Weinheim, 1999; e) J. Roncali, Acc. Chem. Res. 2000, 33, 147-156; <lit f> I. F. Perepichka, D. F. Perepichka, H. Meng, F. Wudl, Adv. Mater. 2005, 17, $2281-$ 2305; g) J. Roncali, P. Blanchard, P. Frère, J. Mater. Chem. 2005, 15, 1589-1610.
[3] For reviews, see: a) A. Deronzier, J. C. Moutet, Acc. Chem. Res. 1989, 22, 249-255; b) N. Toshima, H. Susumu, Prog. Polym. Sci., 1995, 20, 155-183; c) B. R. Saunders, R. J. Fleming, K. S. Murray, Chem. Mater. 1995, 7, 1082-1094; d) J. Rodríguez, H.-J. Grande, T. F. Otero in Handbook of Conductive Molecules and Polymers, Vol. 2 (Ed.: H. S. Nalwa), Wiley, Chichester, 1997, chap. 10; e) A. G. MacDiarmid, Synth. Met. 1997, 84, 27-34; f) N. J. L. Guemion, W. Hayes, Curr. Org. Chem. 2004, 8, 637-651.
[4] a) K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim, 1998; b) J. M. Tour, Molecular Electronics, World Scientific, Singapore, 2003; c) J. M. Tour, Chem. Rev. 1996, 96, 537-554.
[5] a) P. Bäuerle, T. Fischer, B. Bidlingmeier, A. Stabel, J. P. Rabe, Angew. Chem. 1995, 107, 335-339; Angew. Chem. Int. Ed. 1995, 34, 303-307; b) R. S. Becker, J. S. de Melo, A. L. Maçanita, F. Elisei, J. Phys. Chem. 1996, 100, 18683-18695; c) J. M. Tour, Acc. Chem. Res. 2000, 33, 791-804; d) R. G. Hicks, M. B. Nodwell, J. Am. Chem. Soc. 2000, 122, 6746-6753; e) Y. Sakamoto, S. Komatsu, T. Suzuki, J. Am. Chem. Soc. 2001, 123, 4643-4644; f) S. I. Sakurai, H. Goto, E. Yashima, Org. Lett. 2001, 3, 2379-2382; g) T. Izumi, S. Kobashi, K. Takimiya, Y. Aso, T. Otsubo, J. Am. Chem. Soc. 2003, 125, 52865287; h) C. Edder, J. M. J. Frechet, Org. Lett. 2003, 5, 1879-1882; i) A. Facchetti, M.-H. Yooh, C. L. Stern, G. R. Hutchison, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2004, 126, 13480-13501.
[6] a) L. Groenendaal, H. W. I. Peerlings, J. L. H. van Dongen, E. E. Havinga, J. A. J. M. Vekemans, E. W. Meijer, Macromolecules 1995, 28, 116-123; b) C. P. Andrieux, P. Hapiot, P. Audebert, L. Guyard, M. N. Dinh An, L. Groenendaal, E. W. Meijer, Chem. Mater. 1997, 9, 723-729.
[7] a) H. Saadeh, T. Goodson, III, L. Yu, Macromolecules 1997, 30, $4608-4612$; b) A. Pelter, J. M. Maud, I. Jenkins, C. Sadeka, G. Coles, Tetrahedron Lett. 1989, 30, 3461-3464; c) Y. Miyata, T. Nishinaga, K. Komatsu, J. Org. Chem. 2005, 70, 1147-1153; d) G. Distefano, D. Jones, M. Guerra, L. Favaretto, A. Modelli, G. Mengoli, J. Phys. Chem. 1991, 95, 9746-9753; e) T. Kauffmann, H. Lexy, Chem. Ber. 1981, 114, 3667-3673; f) J. S. de Melo, F. Elisei, C. Gartner, G. G. Aloisi, R. S. Becker, J. Phys. Chem. A 2000, 104, 6907-6911.
[8] a) L.-Z. Zhang, C.-W. Chen, C.-F. Lee, C.-C. Wu, T.-Y. Luh, Chem. Commun. 2002, 2336-2337; b) C.-C. Wu, W.-Y. Hung, T.-L. Liu, L.Z. Zhang, T.-Y. Luh, J. Appl. Phys. 2003, 93, 5465-5471.
[9] S.-Y. Lin, I-W. P. Chen, C.-h. Chen, C.-F. Lee, C.-M. Chou, T.-Y. Luh, J. Phys. Chem. B 2005, 109, 7915-7922.
[10] a) C.-F. Lee, L.-M. Yang, T.-Y. Hwu, A.-S. Feng, J.-C. Tseng, T.-Y. Luh, J. Am. Chem. Soc. 2000, 122, 4992-4993; b) C.-F. Lee, C.-Y. Liu, H.-C. Song, S.-J. Luo, J.-C. Tseng, H.-H. Tso, T.-Y. Luh, Chem. Commun. 2002, 23, 2824-2825; c) C.-Y. Liu, T.-Y. Luh, Org. Lett. 2002, 4, 4305-4307; d) For a recent review, see: T.-Y. Luh, C.-F. Lee, Eur. J. Org. Chem. 2005, 3875-3885.
[11] I. W. Tam, J. Yan, R. Breslow, Org. Lett. 2006, 8, 183-185.
[12] a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 1999; b) S. F. Forgues, D. Lavabre, J. Chem. Educ. 1999, 76, 1260-1264; c) J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991-1024.

Received: February 14, 2006

